Vibration Analysis of an Infinite Poroelastic Circular Cylindrical Shell Immersed in Fluid
نویسنده
چکیده
The purpose of this paper is to study the effect of presence of fluid within and around a poroelastic circular cylindrical shell of infinite extent on axially symmetric vibrations. The frequency equation each for a pervious and an impervious surface is obtained employing Biot’s theory. Radial vibrations and axially symmetric shear vibrations are uncoupled when the wavenumber is vanished. The propagation of axially symmetric shear vibrations is independent of presence of fluid within and around the poroelastic cylindrical shell while the radial vibrations are affected by the presence of fluid. The frequencies of radial vibrations and axially symmetric shear vibrations are the cut-off frequencies for the coupled motion of axially symmetric vibrations. The non-dimensional phase velocity as a function of ratio of thickness to wavelength is computed and presented graphically for two different types of poroelastic materials for thin poroelastic shell, thick poroelastic shell and poroelastic solid cylinder.
منابع مشابه
Coupled Vibration of Partially Fluid-Filled Laminated Composite Cylindrical Shells
In this study, the free vibration of partially fluid-filled laminated composite circular cylindrical shell with arbitrary boundary conditions has been investigated by using Rayleigh-Ritz method. The analysis has been carried out with strain-displacement relations based on Love’s thin shell theory and the contained fluid is assumed irrotational, incompressible and inviscid. After determining the...
متن کاملElectro-Thermo-Mechanical Vibration Analysis of a Foam-Core Smart Composite Cylindrical Shell Containing Fluid
In this study, free vibration of a foam-core orthotropic smart composite cylindrical shell (SCCS) filled with a non-viscous compressible fluid, subjected to combined electro-thermo-mechanical loads is investigated. Piezoelectric polymeric cylindrical shell, is made from polyvinylidene fluoride (PVDF) and reinforced by armchair double walled boron nitride nanotubes (DWBNNTs). Characteristics of...
متن کاملExperimental and Numerical Free Vibration Analysis of Hybrid Stiffened Fiber Metal Laminated Circular Cylindrical Shell
The modal testing has proven to be an effective and non-destructive test method for estimation of the dynamic stiffness and damping constant. The aim of the present paper is to investigate the modal response of stiffened Fiber Metal Laminated (FML) circular cylindrical shells using experimental and numerical techniques. For this purpose, three types of FML-stiffened shells are fabricated by a s...
متن کاملNonlinear Vibration and Instability Analysis of a PVDF Cylindrical Shell Reinforced with BNNTs Conveying Viscose Fluid Using HDQ Method
Using harmonic differential quadrature (HDQ) method, nonlinear vibrations and instability of a smart composite cylindrical shell made from piezoelectric polymer of polyvinylidene fluoride (PVDF) reinforced with boron nitride nanotubes (BNNTs) are investigated while clamped at both ends and subjected to combined electro-thermo-mechanical loads and conveying a viscous-fluid. The mathematical mode...
متن کاملA New Three-Dimensional Refined Higher-Order Theory for Free Vibration Analysis of Composite Circular Cylindrical Shells
A new closed form formulation of three-dimensional (3-D) refined higher-order shell theory (RHOST) to analyze the free vibration of composite circular cylindrical shells has been presented in this article. The shell is considered to be laminated with orthotropic layers and simply supported boundary conditions. The proposed theory is used to investigate the effects of the in-plane and rotary ine...
متن کامل